
a Fermi National Accelerator Laboratory 
FERMILAB-Pub-90/114-A 
May 1990 

CHIRAL INTERFACE 
AT THE FINITE TEMPERATURE 

TRANSITION POINT OF QCD 

z. Freit 
NASA/FermiIab Astrophysics Center 

Fermi National Acceletatory Laboratory 

Box 500, Batavia IL 60510-0500 

and 

A. Patkost 

CEBN, Theory Division 

1211 Geneva 23 

Switzerland 

ABSTRACT 

The domain waU between coexisting chiraUy symmetric and broken-symmetry 

regions is studied in a saddle-point approximation to the effective three-flavour Q- 

model. In the chiral limit the surface tension varies in the range [(40- -50)MeV13. 

The width of the domain waII is estimated to be N_ 4.5 fm. 
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1. Recently, considerable effort has been invested into the determination of the 

surface tension between the low- and the high-temperature phases of quantum 

chromodynamics at the coexistence point [1,2]. These investigations have made 

use of the quenched lattice version of QCD. Already at modest temperature- 

extension of the lattice (Nt = 4) considerable difficulties were met in extracting a 

reliable signal for the presence of the interface. In the full theory, the simulation 

of the phase transition with 4 light flavours is well under control [3]. In the 

phenomenologically more interesting Nf = 23 cases the order of the transition is 

not settled yet [4,5]. 

On the basis of these remarks the renewal of interest in the effective low 

energy theories of QCD seems to be justified in the present context too. Since 

some exploratory investigations indicate that near the phase transition the high 

temperature phase of QCD might also be described in terms of colourless, massive 

excitations [6], there is a chance that the phase transition itself can be understood 

fully in this framework. 

In this Letter we present a semiquantitative analysis of the interface between 

coexisting &rally symmetric and broken symmetry regions in a three-flavour 

linear u-model. 

The most successful effective meson model is based on the non-linear realisa- 

tion of the broken-symmetry vacuum [7,8]. In particular, based on the observation 

that the finite-temperature partition function of QCD is determined at low T by 

the Goldstone sector, an expansion has been derived for the quark condensate, 

(44) to O(Ts) [9]. A smooth extrapolation of its decreasing tendency towards 

higher T indicates that the restoration of chiral symmetry would take place at 

Y 170 MeV for Nf = 2. In view of the possible first-order nature of the transition 

this is rather an upper bound on !I’.. As such, it is in agreement with the results of 

MC-simulations of the full QCD with two [lo] and four [3] light flavours (in the lat- 

ter case the proportionality of T, to Nyi’s is to be taken into account). However, 

a fully conventional approach to the chiral phase transition within the non-linear 

model is prevented by the absence of an explicit order parameter field in this the- 

ory. Actually, this field is traded for the coupling F,, whose temperature-variation 

has been also studied in the literature [9,11]. 

An interesting variant of this low-energy description incorporates also a glue- 

bsll field, fuhill&g the trace anomaly slready at the tree level [12,13,14]. The 

resulting idea of a unique mechanism for the finite temperature variation of the 
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chirsl and gluon condensates has been investigated recently in Ref.[l5]. 

It is in the linear a-model where the scalar singlet order parameter field 

appears explicitly. Although the existence of the scalar nonet is a notoriously 

disputed subject, recent analyses claim, that by taking into account the existence 

of K-R molecules, a nonet with the appropriate features can be proposed uniquely 

[16]. The linear model at the tree level represents equally well the low-energy 

meson sector as the non-linear version [17,18,19]. However, it has been explicitly 

shown that renormalisation is not the correct way to improve its predictions [20]. 

Therefore, it is a reasonable strategy [21] to estimate the modification of the tree- 

level potential at finite temperature by taking into account exclusively the thermal 

fluctuations. 

This “classical” interpretation of the effective model has been implemented in 

Ref.[21] by simply omitting the T-independent (divergent) part of the one-loop 

finite temperature quantum correction of the effective potential. This certainly 

cannot be considered a consistent approach. Instead, we emphasize that the Q- 

model provides a classical field-theoretical model for the ground state of QCD, 

which can be investigated at finite temperature in the framework of classical sta- 

tistical physics. We remark that recently the role played in the deconfinement 

by skyrmions has been investigated in the SU(2) x SU(2) non-linear model with 

the same philosophy [22]. Before proceeding to the construction of the chiral 

order parameter profile, we shall calculate the constrained free energy [23,24] of 

the tree-level parametrized linear u-model as for a classical field theory at finite 

temperature. A first-order transition will be detected for Nf = 3 in agreement 

with the results of the general renormslisation group analyses [25,26]. Once the 

functional form of the free energy constrained by the constant non-zero value 

of the o-field is calculated at T, numerically, the construction and the analysis 

of the chiral order parameter profile goes along the same lines as earlier for the 

Polyakov-loop profile [27]. 

The present approach is in full analogy with the treatment of magnetism with 

the help of classical spin-models (Ising, Heisenberg etc.), where the quantsl nature 

of the magnetic phenomena is reflected only in the actual value of the nearest 

neighbour, etc. couplings calculated at zero temperature. The applicability of 

such models to real magnetic crystals depends on the success or failure of their 

predictions. The same statement applies to the content of the present note. 
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2. The Hamiltonian of the linear a-model is given by 

3iP[Ml= itr (VM)(VMt) - 2 tr MMt + g( detM + detMt) 

+fl( tr iI!fMt)* + f~ tr (MAIt)’ , 1 (1) 
where the complex matrix M represents the scalar (u) and the pseudoscalar (4) 

nonets: 
8 

M(z) = 5 p10 + idI(~:))h tr XJI, = 2&i. (2) 

The matrix II is formed from the conjugate momenta of M. In our concrete 

calculations we shall make use of the parametrisation proposed by Goldberg [21], 

which leads to an SV(3)-symmetric spontanous breaking of the SU(3) x SU(3) 

chid symmetry: 

pug = 244MeV, g = -lSllMeV, fi = 1.70, fs = 11.91. (3) 

For the construction of the chiral profile the constrained free energy, corre- 

sponding to a nonzero fixed value of &(k = 0), the k = 0 Fourier component of 

Q(Z), is the appropriate quantity to evaluate. After integrating over the conjugate 

momenta the partition function of the classical medium defined by Eq. (1) and 

Eq. (3) is given by 

Z[UO] = exp{-PVU(u0)) 

= 
J 

DMJ(*o(k = 0) -co) &+r(k = 0)) fIs(&(k = 0)) cxp{-@‘lip}, (4) 
I=1 I=0 

where p = T-l. 

The integration over M in a finite volume V is done by separating the k = 0 

mode explicitly: 

M(z) = $mo I + m(z), G(k = 0) = 0. 

Reshufhing Eq. (1) accordingly, one proceeds to an approximate evaluation of the 

m-integral, which would be exact in an infinite component model (actually, here 

3 



one has 18 components). First, an auxiliary 3 x 3 matrix field C(z) is introduced, 

which formally transforms the quartic piece in the exponent of Eq. (4) into one 

which is quadratic in m. Next, one assumes that the C-integration is dominated 

by an SU(3)-symmetric saddle-point: 

C(z) = s^ I. (6) 

Third, one performs the m-integration in the Gaussian approximation, which 

yields the leading low-temperature correction to the zero-temperature free en- 

ergy. (The perturbation theory with respect to the cubic piece of 7ip corresponds 

to a loop expansion, where the role of h is played by ,L?-’ = T.) 

The detailed presentation of the above procedure can now be found in text- 

books [28], therefore we directly give the infinite-volume result for the one-loop 

correction of the constrained free energy, evaluated at the saddle point: 

+&id,. = T g(Q)ln(k2 +X(Q)). 

In this equation the index Q runs over the scalar singlet (SO), the scalar octet (SS), 

the pseudoscalar singlet (PO), and the pseudoscalar octet (PS) meson-multiplets, 

g(Q) gives the corresponding multiplicities, X(Q) = 2 + pi + ps(Q) acts as a kind 

of effective squared mass, while p’(Q) t a a0 = Cmin(T = 0) yields the meson 

masses in the chiral limit: 

l4SO) = -Pi + sno + 4U,2(3fi + fi), d.9 = 1, 

cl’(S8) = -P: - 3~0 + 4g,l(fi + fz), ds8) = 8, 

g(P0) = 1, 
(8) 

&‘8) = -P: + 300 + ;a;(3fi + fz), g(P8) = 8. 

One has to emphasize that the original integrand of Eq. (4) is exponentially small 

for large field values, therefore the saddle-point approximation loses its sense when 

any single X(Q) becomes negative. In the symmetric phase the particle masses 

are defined at us = 0, where .i has the meaning of the common mass square of 

the parity partners. At zero temperature s^ = -& (see below), which implies by 
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Eq. (3) a,,,:,, = 115 MeV leading to a SU(3)-symmetric spectrum (PS: 0, PO: 850 

MeV, S8: 950 MeV, SO: 600 MeV). Thus, th e saddle-point approach holds the 

promise for a unified description of both phases. 

The saddle-point value of the free energy is found by minimising its expression 

as a function of i for fixed co: 

=&,ddle[&~O] o 
ai =. (9) 

The formal procedure outlined above is given sense by applying a cut-off A 

on the k-integral in Eq. (7). This is physically natural, since the effective theory 

ceases to represent QCD, even approximately, when high-energy fluctuations start 

to play an important role. For the numerical calculations it is convenient to use 

scaled (dimensionless) quantities: 

T i UO 
7 = -, 

A 
a=g, o=-, 

A 

7= f, p. = !!!? 
A’ 

X=$ 

The cut-off integral of Eq. (7) was calculated analytically: 

24 ,.dd& 0, A] = A4 
{ 

- 8(3fi3+ &’ + dig) - gw + &703 + (fl + ;w 

+ &Es(Q) [ln(l + X(Q)) + 2X(Q) - 2X(Q)s/s arctan X-r’s 
Q 

(Q)] )- 

(11) 
The explicit expression of Eq. (9) can be obtained by taking the partial derivative 

of Eq. (11) with respect to s. 

Eq. (9) has been solved for several values of A in the range A E (250,200O)MeV. 

For each A, T w&s varied and s(A, 7, u) found. In the range A E (500, E 1000) MeV 

for some u-values no saddle-point fulfJling the X > 0 condition could be found. 

In these points the proposed approximation scheme fails. Based on the T,-range 

of lattice-calculations discussed in the introduction, our strategy was to choose 

values of A tuning the critical temperature over the interval T, E (100,200) MeV. 

It turns out that the interesting interval in this sense is A < 400 MeV, where the 

saddle-point approximation works well. 

Evaluating Eq. (11) at the saddle point, at very low r its double-well nature 

inherited from the classical potential is preserved. When increasing 7, the position 
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of the non-trivial minimum shifts considerably towards the symmetric minimum 

at the origin. The degeneracy of the corresponding potential values occurs before 

their locations coincide. In the whole parameter region, where the saddle-point 

approximation makes sense, a clean first-order transition was observed. It is worth 

mentioning that on both sides of the transition temperature we found physical 

values for the saddle point (X > 0), which can be contrasted with the case of 

continous phase transitions, discussed in [28], where the critical point is identified 

from the symmetric phase as the end of the validity of the saddle-point dominance. 

In Fig. 1 we illustrate the typical evolution of the potential with the tem- 

perature for A = 300MeV. Other values of the cut-off lead only to quantitative 

changes. In Fig. 2 the smooth variation of T, with A is displayed. Although 

T, < A in the whole range, the relevant h values are lower than what is intuitively 

expected. We remark that T, 5 1OMeV for A 2 1GeV. 

3. When the critical temperature is fixed by choosing A, no free parameter remains 

in the theory. The complete characterisation of the chiral interface will be given 

in physical units. The kink equation 

@-I -= d U(m) 
da9 duo 

is discretised using a lattice constant (a) proportional to h-r 

(12) 

1 
z=la, a=---, 

nA 
n = 1,2, . . . 

The discretised equation for the dimensionless quantities was solved in the form 

The kink solution of the A = 300 MeV case suggests very slight n-dependence, 

even for n = 1,2 (Fig. 3). I n addition, we have calculated the surface tension, 

5 = T [&c(l) - u(l - 1))’ + -&&odd,&)] 

which also shows very slight n-dependence. In Table 1 we give the surface tension 

(cr), the width of the interface (d) and the value of the non-trivial cr,;,, at T, for 

a few T,-values from the relevant range. The most important observation is that 
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none of them seem to be particularly sensitive to T,. The results summarized in 

the Abstract are rather robust. 

The range of a found by us is almost one order of magnitude smaller than the 

bag-model estimate of Ref.[29]. Although Campbell et al. have given some support 

to that result in their effective model calculation, our thickness estimate sheds 

some doubt on the validity of the thin-wall approximation used in [15]. This wall- 

thickness of 4-5 fm is a somewhat intriguing result of the present study. It would 

mean that in heavy ion collisions, in a large part of the firebsll only a decrease 

of the quark-condensate could be achieved, as the tail of the surrounding low- 

temperature vacuum enters fairly deep into the high energy-density region. Such 

a situation might motivate the study of particle emission from states intermediate 

between the fully broken and the symmetric phases at Z’,. 

Our additional numerical investigation showed that if the mass of the scalar 

singlet is increased by up to 950 MeV (the other parameters are kept fixed) no 

quantitative change occurs in the characteristics of the interface. However, if the 

mass of the whole scalar sector is larger (of the order of 1.5 GeV) the surface 

tension would grow to the value conjectured in Refs. [32], and its width would 

decrease to 2 fm. 

4. In this investigation we have attempted a semi-quantitative characterisation 

of the chiral interface at the QCD phase transition point. The linear u-model 

wss just a choice, where the temperature dependent corrections to the free energy 

density of the r-field could be estimated. The model certainly has to be extended 

to take into account further light degrees of freedom with significant coupling to Q. 

A first step in this direction could be a model incorporating an additional glueball- 

field [14]. We note, that with careful discretisation, which takes into account the 

essential role played by the cut-off, one can use non-perturbative lattice methods 

for the study of the thermodynamics of low-energy effective theories as well. 
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Table 1 

The transition temperature and the characteristic data of the chirai order 

parameter profile in the chiral limit of the linear a-model as a function of the 

cut-off. 

A [MeV] 

230 
240 
250 
260 
270 
280 
290 
300 
310 
320 

T 

rc [MeV] 
225.77 
199.14 
176.66 
157.55 
141.20 
127.14 
114.97 
104.38 
95.13 
87.01 

x’13 [MeV] 

38.9 
39.7 
40.6 
41.3 
42.2 
43.1 
43.9 
44.6 
45.4 
46.1 

J if4 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.4 
4.4 
4.4 

- 
c 

I 

rrnin [MeV I 
48.5 
50.2 
51.8 
53.0 
54.3 
55.7 
56.8 
57.9 
58.9 
59.6 

Figure captions 

Figure 1: The variation of 103x the scaled constrained free energy density vs. the 

scaled o-field with the temperature. The curves, starting from below, 

correspond to 2’ = 100 MeV, 102 MeV, T,, 106 MeV and 108 MeV, 

respectively. 

Figure 2: The dependence of the critical temperature on the cut-off of the thermal 

fluctuations. Both T, and A are measured in MeV. 

Figure 3: The chiral order parameter profile displayed on a lattice with lattice con- 

stant a=1/3A. The different curves correspond to appropriately scaled- 

up kinks evaluated origimdly on lattices with a=l/A (solid), a=1/2A 

(dashed) and a=1/3A (dotted), respectively. The value of the o-field is 

measured in MeV. 
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